

AI-518/518P型人工智能温度控制器 使用说明书

(9.2)

目 录

1 概述	
1.1 主要特点	
1.2 型号定义	
1.3 模块使用	
1.3.1 模块插座功能定义	5
1.3.2 常用模块型号	
1.3.3 模块安装更换	8
1.3.4 模块的电气隔离	8
1.3.5 部分模块应用说明	
1.4 技术规格	10
1.5 接线方法	12
2 显示及操作	20
2.1 盘装表面板说明	20
2.2 D71/E7 导轨表面板说明	21
2.3 显示状态	
2.4 操作方法	23
2.4.1 设置参数	23
2.4.2 快捷操作功能	23
3 参数功能	

3.1 自定义参数表	25
3.2 完整参数表	
3.3 特殊功能补充说明	43
3.3.1 单相移相触发输出	
3.3.2 上电时免除报警功能	43
3.3.3 给定值切换 / 外部程序控制按钮	
3.3.4 通讯功能	
3.3.5 温度变送器 / 程序给定发生器	
3.3.6 自定义输入规格	
3.3.7 输入信号多段线性修正功能	
3.3.8 高温炉非线性功率控制功能	47
4 程序控制(仅适用 AI-518P 型)	49
4.1 功能及概念	49
4.2 程序编排	
4.2.1 斜率模式	51
4.2.2 平台模式	
4.2.3 时间设置	
4.2.4 给定值设置	
4.2.5 运行多条曲线时程序的编排方法	54
5 常见问题解答	
5.1 如何自整定?	
, - ,	

5.2 怎么进入内部参数列表?	55
5.3 如何判定仪表有无输出?	
5.4 仪表面板闪烁 orAL ?	56
5.5 怎么进入程序段设置?	
5.6 报警参数如何设置?	56
5.7 怎么设置加热制冷双输出?	56

1 概述

1.1 主要特点

- ●输入采用测量精确稳定的数字校正系统,支持多种热电偶和热电阻规格,最高分辨率达0.01℃。
- ●采用先讲的AI人丁智能PID调节算法,无超调,具备自整定(AT)功能。
- ●采用先进的模块化结构,提供丰富的输出规格,能广泛满足各种应用场合的需要,交货迅速且维护方便。
- ●人性化设计的操作方法,易学易用。
- ●允许自编辑操作权限及界面,并可自设定密码,形成"定制"自己的仪表。
- ●全球通用的100-240VAC输入范围开关电源或24VDC电源供电,并具备多种面板及外形尺寸供洗择。
- ●抗干扰性能符合在严酷工业条件下电磁兼容 (EMC) 的要求。

注意事项

- ●本说明书介绍的是V9.2的AI-518/518P型人工智能PID温度控制器,本说明书介绍的功能有部分可能不适合其他版本仪表。仪表的型号及软件版本号在仪表上电时会在显示器上显示出来,用户使用时应注意不同型号和版本仪表之间的区别。务必请用户仔细阅读本说明书,以正确使用及充分发挥本仪表的功能。
 - ●AI仪表在使用前应对其输入、输出规格及功能要求来正确设置参数,只有配置好参数的仪表才能投入使用。

1.2 型号定义

AI系列仪表硬件采用了先进的模块化设计。AI-518/518P仪表最多允许安装5个模块,输出、报警、通讯及其他功能均可按需求选择相应的模块,模块可以与仪表一起购买也可以分别购买,自由组合。仪表的输入方式可自由设置为热电偶、热电阻和线性电压(电流),AI-518/518P型仪表型号共由9部分组成,例如:

这表示一台仪表: ①基本功能为AI-518型; ②面板尺寸为A型 (96×96mm); ③辅助输入 (MIO) 没有安装模块; ④主输出 (OUTP) 安装线性电流输出模块; ⑤报警ALM安装L3双路继电器触点输出模块; ⑥辅助输出 (AUX) 没有安装模块; ⑦通讯接□ (COMM) 装有自带隔离电源的光电隔离型RS485通讯接□S4; ⑧仪表供电电源为24VDC电源; ⑨扩充输入规格为F2型 (辐射式高温温度计); 以下为仪表型号中9个部分的含义。

①表示仪表基本功能

AI-518 (0.25级精度的经济型温控器, AI人工智能调节技术, 多种报警模式及变送、通讯等功能) AI-518P (在AI-518基础上增加30段时间程序控制功能)

② 表示仪表面板尺寸规格

	外形代码	外形尺寸 宽×高(mm)	插入深度 (mm)	开孔尺寸 宽×高(mm)	光柱
	Α	96×96	100	92 ^{+0.5} ×92 ^{+0.5}	
	A2	90^90	100	92 ^92	25段4级亮度,1%的分辨率
	В	160×80	100	152+0.5×76+0.5	
	B2	100~00	100	102 * * 70 * *	25段4级亮度,1%的分辨率
长表	С	80×160	100	76 ^{+0.5} ×152 ^{+0.5}	
	E	48×96	100	45 ^{+0.5} ×92 ^{+0.5}	
	E2	40^30	100	40 402	25段4级亮度,1%的分辨率
	F	96×48	100	92 ^{+0.5} ×45 ^{+0.5}	
	D	72×72	95	68 ^{+0.5} ×68 ^{+0.5}	
	D2	48×48	95	45 ^{+0.5} ×45 ^{+0.5}	
	A1	06×06	96×96 70	92 ^{+0.5} ×92 ^{+0.5}	
	A21	90^90	'0		25段4级亮度,1%的分辨率
	B1	160×80	160×80 70	152+0.5×76+0.5	
	B21	100^80	'0	132 *** 770 ***	25段4级亮度,1%的分辨率
短表	C1	80×160	70	76 ^{+0.5} ×152 ^{+0.5}	
	D1	48 × 48	80	45 ^{+0.5} ×45 ^{+0.5}	
	D61	48 × 48	80	46 ^{+0.5} ×46 ^{+0.5}	
	E1	48×96	70	45 ^{+0.5} ×92 ^{+0.5}	
	E21	1 40/90	'0	70 492	25段4级亮度,1%的分辨率

	F1	96×48	70	92 ^{+0.5} ×45 ^{+0.5}	
	D5	22.5×100	112	DIN导轨安装模式,可外:	接E8键盘及显示器进行设置及操作
导轨表	D7	22.5×100	112	电源与通讯的接线方式采	用插拔总线端子形式,其他与 E7 相同
寸利衣	E7	22.5×100	112	DIN导轨安装模式,特制	双排LED显示,带按键操作
	E5	48×96	100	DIN导轨安装模式, 可外	接E8键盘及显示器进行设置及操作

- ③表示仪表辅助输入(MIO)安装的模块规格:可安装12、I44、K3、V等模块,N表示没有安装,下同。
- ④表示仪表主输出(OUTP)安装的模块规格:可安装L1、L2、L4、W1、W2、G、K1、K3、X3、X5等模块。
- ⑤表示仪表报警(ALM)安装的模块规格:可安装L2、L21、L3、L4、W1、W2、G等模块。
- ⑥表示仪表辅助输出(AUX)安装的模块规格:可安装L1、L2、L21、L3、L4、W1、W2、G、K1、X3、X5等模块。
- ⑦表示仪表COMM模块位置安装的模块规格:可安装S、S4、V等模块。
- ⑧表示仪表供电电源:不写表示使用100~240VAC电源,24VDC表示使用20-32VDC电源。
- ⑨表示仪表扩充的分度表规格(如没有,则不写),AI-518/518P已存储了常用的热电偶、热电阻输入规格(详见后文技术规格),但如果使用以上规格以外的输入信号,允许用户扩充一种输入规格。

注1:本仪表采用自动调零及数字校准技术的免维护型仪表,计量检定时若超差,通常对仪表内部进行清洁及干燥即可解决问题。万一干燥和清洁无法恢复精度。应将此仪表视同故障仪表送问厂方检修:

注2: 凡需要返修的仪表,务必请写明故障现象及原因,以保证能获得正确而全面的修复。

1.3 模块使用

1.3.1 模块插座功能定义

AI-518/518P仪表最多具备5个可选装的功能模块插座(其中D及A1、A21等短表尺寸为3个,即OUTP、AUX及COMM/AL1; D2尺寸为2个,即OUTP、COMM/AUX; D5/D71/E7为1个,即OUTP; D1无插座,模块为固化),通过安装不同的模块,可实现不同类型的输出规格及功能要求。

辅助输入(MIO): 可安装带24V电源输出的电流输入模块I44, 使仪表能直接输入2线制变送器或4~20mA信号;或安装I2开关量输入模块(事件输入),使仪表能利用外部开关实现给定值SP1/SP2的切换(定点控制),或实现控制运行/停止功能等等;与OUTP一起安装K3模块,可实现可控硅三相过零触发输出等。

主输出(OUTP):作为ON-OFF、标准PID调节、AI人工智能APID调节的输出;也可作为测量值或给定值变送输出。安装L1或L4模块为继电器触点输出;安装X3或X5模块可实现0-20mA/4-20mA/0-10mA线性电流输出;安装G模块可实现SSR电压输出;安装W1或W2可实现可控硅无触点开关输出。

报警 (ALM): 安装L2或L21可作为一路常开+常闭继电器报警输出 (AL1), 或安装L3作为二路常开继电器报警输出 (AL1+AL2)。

辅助输出(AUX): 在同时需要加热/致冷双输出的控制场合, AUX 位置可安装 X3、X5、L1、L4、G、W1、W2 等模块作为调节器第二输出; 在不需要作为第二输出的场合可安装 L2、L21 或 L3 继电器作为报警输出。也可安装 R模块(RS232C接□)实现与计算机通讯功能。

通讯接□(COMM): 可安装 S 或 S4 模块 (RS485 通讯接□) 用于与计算机通讯,也可安装电压输出模块给外部传感器供电。

1.3.2 常用模块型号

- N (或不写) 没有安装模块。
- L1 大容量大体积继电器常开触点开关输出模块(模块容量: 30VDC/2A, 250VAC/2A)。
- L2 小容量小体积继电器常开+常闭触点开关输出模块(模块容量: 30VDC/1A, 250VAC/1A, 适合报警用)。
- L21 小容量小体积继电器常开+常闭触点开关输出模块(模块容量: 30VDC/1A, 250VAC/1A, 适合报警用)。
- L3 双路大容量大体积继电器常开触点开关输出模块(容量: 30VDC/2A, 250VAC/2A)。
- L4 大容量小体积继电器常开+常闭触点开关输出模块(模块容量: 30VDC/2A, 250VAC/2A)。
- W 1/W 2 可控硅无触点常开式 (W2为常闭式) 输出模块 (容量: 100~240VAC/0.2A, "烧不坏"特点)。
- G 固态继电器驱动电压输出模块 (12VDC /30mA)。
- G5 双路固态继电器驱动电压输出模块。
- K1/K3 单路/三路"烧不坏"可控硅过零触发输出模块(每路可触发5~500A双向或二个反并联的单向可控硅)。
- K50/K60 单路220VAC/380VAC "烧不坏"单路可控硅移相触发输出模块(可触发5~500A双向或二个反并联的单向可控硅)。
 - X3光电隔离的可编程线性电流输出模块。
 - X5 自带隔离电源的光电隔离型可编程线性电流输出模块。
 - S 光电隔离RS485通讯接□模块。
 - S2 光电隔离RS485通讯接模块(适用于D和D71尺寸)
 - S1 光电隔离RS485通讯接□模块(用仪表内部24V隔离电源)。
 - S4 自带隔离电源的光电隔离RS485通讯接□模块。
 - R 光电隔离的RS232C通讯接□模块。

V24 / V12 / V10 隔离的24V/12V/10V直流电压输出,可供外部变送器或其它电路使用,最大电流50mA。 I2 开关量/频率信号输入接口,可用于外部开关接点或频率信号输入,含12VDC电源输出供外部传感器使用。 I44 模拟量 4~20mA/0~20mA 输入接口,含 24VDC/25mA 电源输出供二线制变送器使用。

1.3.3 模块安装更换

模块可根据用户订货时的要求,在仪表交货前就安装好,并正确设置了相应的参数。如模块损坏或需要变更功能时,用户也可自行更换模块。更换模块时可将仪表机芯抽出,用小的一字螺丝刀小心在原有模块与主板插座接缝处小心撬开,拆下原有模块,再按标示装上新的模块。如果模块种类改变,常常还需要改变对应参数的设置。

1.3.4 模块的电气隔离

仪表内部具有 1 组 24V 和 1 组 12V 与主线路相互隔离的电源供模块使用,24V 电源通常供电压输出类模块使用,如 V24/V12/V10(24V/12V/10V 电压输出)、I2(频率/开关量输入,其 12V 输出电压可以是隔离的)或 I44 等模块。12V 电源供输出和通讯模块使用;继电器、可控硅触发输出模块通常自身具备隔离或无需使用隔离电源,因此主要考虑通讯接口和电流输出之间的隔离,S(RS485 通讯接口)、R(RS232 通讯接口)、X3(线性电流输出),其输入输出端子都与仪表输入回路即主线路电气相互隔离,但这些模块都需要使用仪表内部提供的 12V 隔离电源,如果用户同时安装了上述 2 个具隔离功能的模块,则这 2 个模块相互之间不能实现电气隔离,因为它们共用了隔离部分的电源。为此设计了 S4(RS485 通讯接口)和 X5(线性电流输出)等新型模块,这些模块自带高效率 DC/DC 电源隔离转换器,不占用仪表内部隔离电源。例如:在仪表主输出(OUTP)位置安装了 X3 模块,在通讯接口(COMM)上如果安装 S 或 X3 模块,则 X3 与 S 或 X3 两模块之间不能隔离,应安装 S4 或 X5 模块。对于继电器触点输出及可控硅无触点开关输出,则都与其它电路相互隔离,并且不受安装其它模块与否的限制;而 SSR 电压输出模块(G 模块)一般无需再加额外的隔离,因为通常的 SSR 本身都具有隔离功能。

1.3.5 部分模块应用说明

电压输出类模块: V24、V10及V12等电源输出类模块通常为外部的传感器、变送器反馈电阻提供电源,这种模块可安装在任何模块插座上,但为使接线规范,建议依据模块位置是否空闲依序安装在MIO、AUX和COMM的位置上。

无触点开关模块: W1/W2是应用先进的"烧不坏"保护技术和过零接通技术而设计的新型无触点开关模块,它可替代以往常用的继电器触点开关输出来用于控制交流接触器或电动执行器的伺服电机,相比继电器触点输出模块而言,具备寿命长及可大大降低设备的干扰火花等优点,能大幅度提高系统的可靠性。无触点开关的驱动元件是可控硅,所以它只适合控制100-240VAC规格的交流电源,而不能用于控制直流电源。由于输出端串联了保护器件,其最大持续控制电流为0.2A,瞬间电流则允许达2A,这样的驱动能力可直接控制220AC,80A以下的交流接触器,但对于更大的负载则需要加中间继电器。

继电器模块:继电器模块是工业控制中应用非常广泛的输出模块,但也是各种模块中唯一有使用寿命问题和高度限制的模块,此外继电器动作时常会带来大量电磁干扰,所以正确选择继电器模块非常重要。控制以220VAC供电的接触器、电磁阀等机械开关输出,推荐用W1模块。若控制为直流或50VAC以上交流电,则只能用继电器模块,可用L1、L4等模块。L2型模块为小体积模块,没有体积限制问题,且具备常开+常闭触点而且均有压敏电阻火花吸收功能,但触点容量小,适合用于报警输出。L1、L3为大体积、大容量的继电器模块,这种模块在48mm宽度(包括D2、E、F、E5等尺寸)仪表中不能同时在主板及侧板安装,否则会碰到一起,所以其中一面安装L1或L3时,另一面要装输出模块则不能再安装L1或L3模块。L3为唯一的一种双路继电器模块,可用于2路报警输出,如AL1+AL2等,若不喜欢机械触点或受高度限制无法安装,可选G5(SSR电压)外接固态继电器(SSR)来驱动负载。

1.4 技术规格

●输入规格 (一台仪表即可兼容):

热电偶: K、S、R、E、J、T、B、N、WRe3-WRe25、WRe5-WRe26等

热电阻: Cu50、Pt100

线性电压: 0~5V、1~5V、0~100mV、0~20mV等

线性电流 (需外接分流电阻): 0~10mA、0~20mA、4~20mA等

扩充规格:在保留上述输入规格基础上,允许用户指定一种额外输入规格(可能需要提供分度表)

●测量范围:

K(-200~+1300℃)、S(-50~+1700℃)、R(-50~+1700℃)、T(-200~+350℃)

 $E(0~800^{\circ})$, $J(0~1000^{\circ})$, $B(200~1800^{\circ})$, $N(0~1300^{\circ})$

Cu50(-50~+150℃)、Pt100(-200~+800℃)

线性输入: -9990~+30000由用户定义

●测量精度: 0.25%FS±1个测量单位

●采样周期: 每秒采样 8 次; 设置数字滤波参数 FILt=0 时, 响应时间 < 0.5 秒

●控制周期: 0.24-300.0秒可调

●调节方式:

位式调节方式 (回差可调)

AI人工智能调节,包含模糊逻辑PID调节及参数自整定功能的先进控制算法

●输出规格(模块化):

继电器触点开关输出(常开+常闭): 250VAC/1A 或30VDC/1A

可控硅无触点开关输出(常开或常闭): 100~240VAC/0.2A(持续), 2A(20mS瞬时, 重复周期大于5S)

SSR电压输出: 12VDC/30mA (用于驱动SSR固态继电器)

可控硅触发输出:可触发5~500A的双向可控硅、2个单向可控硅反并联连接或可控硅功率模块 线性电流输出:0~10mA或4~20mA可定义(安装X3模块时输出电压≥10.5V;X5模块输出电压≥7V)

●报警功能:上限、下限、偏差上限、偏差下限等4种方式,最多可输出4路,有上电免除报警选择功能

●电磁兼容: IEC61000-4-4 (电快速瞬变脉冲群), ±4KV/5KHz; IEC61000-4-5 (浪涌), 4KV

●隔离耐压:电源端、继电器触点及信号端相互之间 ≥2300V;相互隔离的弱电信号端之间 ≥600VDC

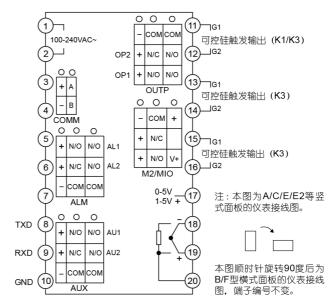
●电 源: 100~240VAC, -15%, +10% / 50~60Hz; 120-240VDC; 或24VDC, -15%, +10%

●电源消耗: ≤5W

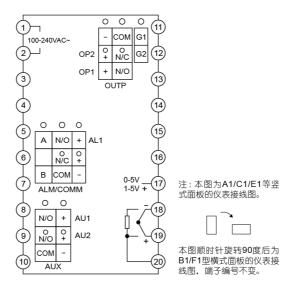
●使用环境:温度-10~60℃;湿度≪90%RH

●面板尺寸: 96×96mm、160×80mm、80×160mm、48×96mm、96×48mm、48×48mm、72×72mm

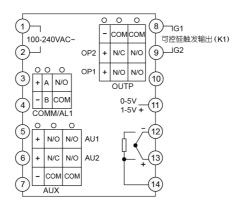
●开口尺寸: 92×92mm、152×76mm、76×152mm、45×92mm、92×45mm、45×45mm、68×68mm


●插入深度: <100mm

1.5 接线方法

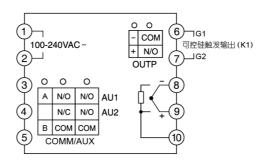

注: 因技术升级或特殊订货等原因,仪表随机接线图 如与本说明书不符,请以随机接线图为准。

仪表后盖端子排布如图:


注: ① 线性电压量程在 100mV 以下 的由 19、18 端输入,0~5V 及 1~5V 的信 号由 17、18 端输入: ② 4~20mA 线件电 流输入可用 250 欧变为 1~5V 电压信号, 然后从 17、18 端输入. 也可在 MIO 位置 安装 | 44 模块从 | 14+、 15- 端输入. 或直 接从 16+、14-接二线制变送器; ③ 不同 分度号的热电偶采用的热电偶补偿导线不 同,采用内部自动补偿模式时,补偿导线 应直接接到仪表后盖的接线端子上,中间 不能转成普通导线,否则会产生测量误 差。④ 主输出为电流、单路 SSR 电压输 出时由端子 13+、11-输出。⑤安装 L1/L21 等单路继电器模块时, OP1、 AL1、AU1 为常开点. OP2、AL2、AU2 为常闭点。

短表后盖端子排布如图:

D型面板仪表(72mmX72mm)接线图如下:



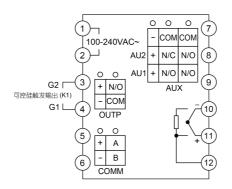
注1: 线性电压量程在100mV以下的由13、12端输入,0~5V及1~5V的信号由11、12端输入。

注2:4~20mA线性电流输入可用250欧电阻变为1~5V电压信号,然后从11、12端输入。

注 3: COMM 位置安装 S 或 S4 通讯接□模块时用于通讯;安装继电器/无触点开关/SSR 电压输出模块时用于AL1 报警输出;安装 I2 模块并将 bAud 参数设置为 1,则可虚拟 MIO 模块开关量输入功能,在 3、4 端外接的开关实现 SP1/SP2 切换或用于控制程序的运行/停止。


D2 型面板仪表 (48X48mm) 接线图如下:

注1: D2面板尺寸仪表线不支持0~5V及1~5V线性电压输入,如有需要应外接精密电阻分压后将信号转换为0-100mV或20-100mV输入、4~20mA线性电流输入用5欧电阻变为20~100mV,然后从9、8端输入。

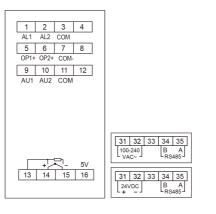

注 2: COMM/AUX 端安装 S 或 S4 通讯接口模块时用于通讯(COMM),安装 L2 继电器时用于 AU1 报警输出,安装 L3 双继电器输出模块,并将 bAud 参数设置为 0,可用于 AU1 及 AU2 报警输出,设置 bAud=2,可用于 AU1 及 AL1 报警输出;或安装 L1、L2、L4、G、K1、W1、W2 等模块在双向调节中作辅助输出;安装 I2/I5 模块并将 bAud 参数设置为 1,则可虚拟 MIO 模块开关量输入功能,接线为 3、5 端子。

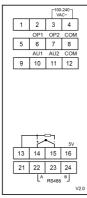
D5 型面板仪表接线图如下:

注: D5型仪表, 固定一路报警和通讯功能, 主输出模块可选择G、X5、L2、K1、K50、K60、W1。

D61 型面板仪表 (48X48mm) 接线图如下:

注 1: D61 面板尺寸仪表不支持 0-1V 及以上线性电压直接输入,如有需要应外接精密电阻分压后将信号转换为 0~100mV 输入: 4~20mA 线性电流输入用 5 欧高精密电阻变为 20~100mV,然后从 11+、10-端输入。

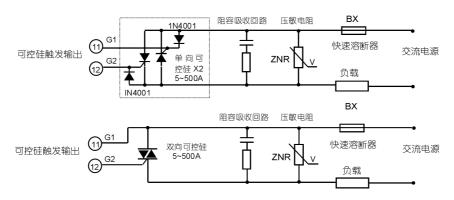

注 2: 线性电压量程在 0~100mV 及以下的由 11+、10-端输入


注 3: COMM 位置安装 S 通讯模块时用于 RS485 通讯;安装 I2 模块并将 bAud 参数设置为 1,则可虚拟 MIO模块开关量输入功能,在 5、6 端外接开关实现 SP1/SP2 切换或用于控制程序的运行/停止等功能。

D71/E7 型面板仪表(22.5X100mm)接线图如下:

注1: 0-5V/1-5V从 15-、16+输入, 100mV 以下从14+、15-输入. 4-20mA线性电流输入用 250 欧 姆 电 阴 变 为 1-5V, 然后从15-、16+输 λ_{\circ}

注 2: 主输出模块 可选择 G、X3、L2、 K1、K50、K60、W1。 注3: 此为新D71接 线图, 如收到的实物接 线图标签与此不同,请 联系技术部咨询。



注 1: 0-5V/1-5V 从 16+、15-输 入. 100mV 以下从 14+、15-输入, 4-20mA 线性电流输 入并 250 欧姆电阻 变为 1-5V. 然后从 16+、15-输入。 注 2: 主输出 模块可选择 G、

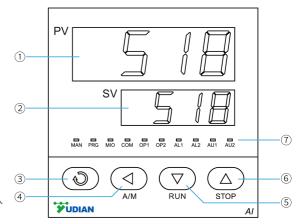
X3 L2 K1 . K50、K60、W1。

D71接线图

E7接线

注 1:根据负载的电压及电流大小选择压敏电阻以保护可控硅,负载为感性或采用移相触发时必须加阻容吸收。

注 2: 推荐使用可控硅功率模块,一个功率模块内部包含 2 个单向可控硅,如图中虚线部分。

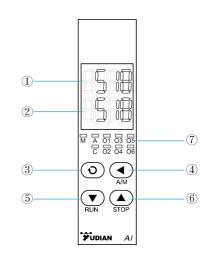

注 3: 采用 K60 模块时, 负载电源为 380VAC,采用 K50 模块时, 负载电源范围缩小为 200~240VAC, 且电源频率必须为 50HZ。

注4: 采用三相三线制电炉且使用时间比例过零触发控制时,只需要二路双向可控硅即能可靠控制,不仅降低成本还可节约大约0.2%的电力(三相三路可控硅电炉控制大约0.6%的电是消耗在可控硅上的)。当不接零线使用三路可控硅全控会导致瞬间触发不能完全过零,给电网及触发模块带来冲击。如果要求可控硅停止触发时电炉丝不能带电、建议用加漏电开关处理、若必须采用三路可控硅全控、建议电炉增加零线。

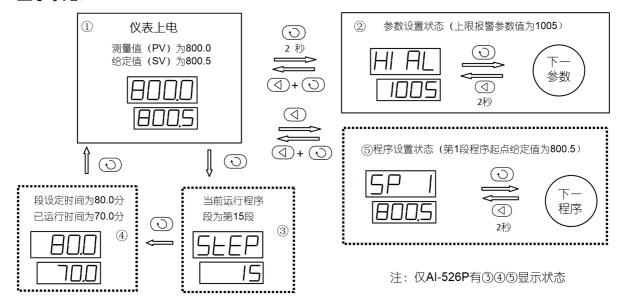
2显示及操作

2.1 盘装表面板说明

- ① 上显示窗,显示测量值 PV、参数名称等
- ② 下显示窗,显示给定值 SV、报警代号、参数值等
- ③ 设置键,用于进入参数设置状态,确认参数修改等
- ④ 数据移位 (兼定点控制操作)
- ⑤ 数据减少键 (兼运行/暂停操作)
- ⑥ 数据增加键 (兼停止操作)
- ⑦ 10 个 LED 指示灯, 其中 MAN 灯本系列产品不用; PRG 灯亮表示处于控制运行状态; MIO、OP1、OP2、AL1、AL2、AU1、AU2 等等分别对应模块输入输出动作; COM 灯亮表示正与上位机通讯



仪表上电后进入基本显示状态,此时仪表上、下显示窗分别显示测量值(PV)和给定值(SV),下显示窗还可交替显示以下字符表示状态:①"orAL",表示输入的测量信号超出量程;②"HIAL"、"LoAL"、"HdAL"或"LdAL"时,分别表示发生了上限报警、下限报警、偏差上限报警、偏差下限报警;③"StoP"表示处于停止状态;"HoLd"和"rdy"分别表示暂停状态和准备状态(仅AI-518P程序型仪表使用)。


注: 若有必要也可关闭第②项报警字符闪动功能以避免过多的闪动(将ADIS参数设置为oFF)。

2.2 D71/E7 导轨表面板说明

- ① 上显示窗,显示测量值 PV、参数名称等
- ② 下显示窗,显示给定值 SV、报警代号、参数值等
- ③ 设置键,用于进入参数设置状态,确认参数 修改等
- ④ 数据减少键 (兼运行/暂停操作)
- ⑤ 数据增加键 (兼停止操作)
- ⑥ 数据移位 (兼定点控制操作)
- ⑦ 9 个 LED 指示灯, 其中 M、A 对应有手自动和 MIO 输入功能的型号; O1、O2、O3、O4、O5、O6 分别对应 OP1、OP2、AU1、AU2、AL1、AL2; C 灯闪亮表示正与上位机通讯。

2.3 显示状态

2.4 操作方法

2.4.1 设置参数

在基本显示状态下按 ② 键并保持约2秒钟即可进入自定义的现场参数设置状态。可直接按 ③ 、 ② 、 △ 等键修改参数值。按 ② 键减小数据,按 ④ 键增加数据,所修改数值位的小数点会闪动(如同光标)。按键并保持不放,可以快速地增加/减少数值,并且速度会随小数点的右移自动加快。也可按 ④ 键来直接移动修改数据的位置(光标),操作更快捷。按 ② 键可保存被修改的参数值并显示下一参数,持续按 ② 键可快速向下;按 ④ 键并保持不放2秒以上,可返回显示上一参数;先按 ④ 键不放接着再按 ③ 键可直接退出参数设置状态;如果没有按键操作,约25秒钟后也会自动退回基本显示状态。

2.4.2 快捷操作功能

AI-518/518P的所有功能都可以用修改参数的方式的来完成,但对于部分常用的功能,如修改给定值及程序的运行/停止操作等等,我们设计了快捷操作来简化使用,这些快便捷方式也可以设置成禁止使用以防止误操作。

设置给定值:按 ⓓ 键可进入修改当前给定值状态,再按 ⓓ 、▽、△等键可直接修改给定值;

设置程序(仅AI-518P): AI-518P按(ଏ)键一下可进入程序设置状态,首先显示的是当前运行段给定值,按键则可显示下一个数据,每段程序按"给定值-时间-给定值"的顺序依次排列。即使在程序正在运行时也可以修改程序。

运行控制:需要启动运行控制时按 (文)键并保持约 2 秒钟使仪表下显示器显示 "run"的符号即可。AI-518P 在

停止状态下将启动程序运行或解除保持运行状态。对于 AI-518P 且参数 PAF.F=1 时,如果仪表已处于程序运行状态,该操作将使程序进入保持运行(HoLd)状态,该状态下时间将暂停计时,再执行一次 run 操作可恢复正常运行。

停止控制:按"△"键保持2秒左右使下显示器将显示"StoP"的符号即可,仪表停止控制输出。AI-518P停止程序运行,并且程序段号参数StEP被修改为1。

自整定AT:按①键并保持2秒,将出现At参数,按②键将下显示窗的OFF修改on,再按②键确认即可开始执行自整定功能(注:若仪表SPr参数设置有效并处于升温限制状态下,则自整定暂停执行,等升温完毕后会自动启动),仪表下显示器将闪动显示"At"字样,仪表经过2个振荡周期的ON-OFF控制后可自动计算出PID参数。如果要提前放弃自整定,可再按②键并保持约2秒钟调出At参数,并将on设置为OFF在按③键确认即可。如果仪表处于程序运行状态,自整定将导致暂停程序计时以确保给定值不会发生变化。

注1: AI-518/518P采用先进的综合了AI人工智能技术的PID调节算法,解决了标准PID算法容易超调的问题且控制精度高。我们把这种改良过的PID算法称为APID算法。当仪表选用APID或PID调节方式且初次使用时,均可启动自整定功能来协助确定PID等控制参数。

注2: 系统在不同给定值下整定得出的参数值不完全相同,执行自整定功能前,应先将给定值SV设置在最常用值或是中间值上,如果系统是保温性能好的电炉,给定值应设置在系统使用的最大值上,自整定过程中禁止修改SV值。视不同系统,自整定需要的时间可从数秒至数小时不等。

注3:控制回差参数CHYS对自整定结果也有影响,一般CHYS的设定值越小自整定参数准确度越高。但CHYS值如果过小则可能因输入波动引起位式调节的误动作,这样反而可能整定出彻底错误的参数,推荐CHYS=2.0。

注4: 自整定刚结束时控制效果可能还不是最佳,由于有学习功能,因此使用一段时间后方可获得最佳效果。

3参数功能

3.1 自定义参数表

AI-518/518P的参数表可编程定义功能,能为你自定义仪表的参数表,为保护重要参数不被随意修改,我们把在现场需要显示或修改的参数叫现场参数,现场参数表是完整参数表的一个子集并可由用户自己定义,能直接调出供用户修改,而完整的参数表必须在输入密码的条件下方可调出。参数锁Loc可提供多种不同的参数操作权限及进入完整参数表的密码输入操作,其功能如下:

Loc=0,允许修改现场参数,允许在基本显示状态下直接修改给定值;

Loc=1,禁止修改现场参数,允许在基本显示状态下直接修改给定值;

Loc=2~3,允许修改现场参数,禁止用快捷方式修改给定值、程序值操作,但允许程序运行/暂停/停止/定点控制等快捷操作;

Loc=4~255. 不允许修改Loc本身以外的仟何参数. 也禁止全部快捷操作:

设置Loc=密码(密码可为256~9999之间的数字,初始密码为808)并按 ① 确认,可进入显示及修改完整的参数表,一旦进入完整参数表,则除只读参数除外,其余所有的参数都是有权修改的。

参数EP1~EP8可让用户自己定义1~8个现场参数,如果现场参数小于8个,应将没用到的第一个参数定义为nonE,例如:我们需要的参数表有HIAL、HdAL、At等三个参数,可将EP参数设置如下:EP1=HIAL、EP2=HdAL、EP3=At、EP4=nonE。

注: 白V9.16版本起, Loc参数可设置通信写入限制, 具体内容请查看通讯协议说明。

3.2 完整参数表

完整参数表分报警、调节控制、输入、输出、系统功能、给定值/程序及现场参数定义等共**8**大块,按顺序排列如下:

参数	参数含义	说 明	设置范围
HIAL	上限报警	测量值PV大于HIAL值时仪表将产生上限报警;测量值PV小于HIAL-AHYS值时, 仪表将解除上限报警。 注:每种报警可自由定义为控制AL1、AL2、AU1、AU2等输出端口动作,也可以不做任何动作,请参见后文报警输出定义参数AOP的说明。	
LoAL	下限报警	当PV小于LoAL时产生下限报警,当PV大于LoAL+AHYS时下限报警解除。 注:若有必要,HIAL和LoAL也可以设置为偏差报警(参见AF参数说明)。	-9990~ +32000
HdAL	偏差上限 报警	当偏差(测量值PV-给定值SV)大于HdAL时产生偏差上限报警;当偏差小于HdAL-AHYS时报警解除。设置HdAL为最大值时,该报警功能被取消。	単位
LdAL	偏差下限 报警	当偏差(测量值PV-给定值SV)小于LdAL时产生偏差下限报警,当偏差大于LdAL+AHYS时报警解除。设置LdAL为最小值时,该报警功能被取消。 注:若有必要,HdAL和LdAL也可设置为绝对值报警(参见AF参数说明)。	
AHYS	报警回差	又名报警死区、滞环等,用于避免报警临界位置由于报警继电器频繁动作,作用见上。	0~9999 单位

AdIS	报警指示	OFF,报警时在下显示不显示报警符号。 on,报警时在下显示器同时交替显示报警符号以作为提醒,推荐使用。 FOFF,节能/保密显示模式,此模式下仪表会关闭测量值和给定值的显示,可以 节约仪表耗电或保密工艺温度,下显示窗显示当前站号,报警时会显示报警符号。	
AOP	报警输出定义	AOP的4位数的个位、十位、百位及千位分别用于定义HIAL、LoAL、HdAL和LdAL等4个报警的输出位置,如下: AOP = 3	0~6666

nonc	常开/常闭 选择	单路报警继电器可同时具备常开+常闭输出,但双路报警模块L3只有常开输出,可通过nonc参数将常开输出定义为常闭输出。设置nonc=0时,安装在AL1、AL2、AU1、AU2位置的L3继电器均为常开输出,设置nonc=15时,仪表报警均为常闭输出。当需要部分通道常开,部分通道常闭时,可按以下公式计算nonc值。nonc=A X 1+B X 2+C X 4+D X 8 公式中A、B、C、D分别表示AL1、AL2、AU1、AU2的常开常闭选择,其数值为1时,对应报警为常闭输出,其数值为0时,对应报警为常开输出。	0~15
CtrL	控制方式	OnoF,采用位式调节(ON-OFF),只适合要求不高的场合进行控制时采用。APID,先进的AI人工智能PID调节算法,推荐使用。nPID,标准的PID调节算法,并有抗饱和积分功能。PoP,直接将PV值作为输出值,可使仪表成为温度变送器。SoP,直接将SV值作为输出值,可使AI-518P型仪表成为程序发生器。	
Srun	运行状态	run,运行控制状态,PRG灯亮。 StoP,停止状态,下显示器闪动显示"StoP",PRG灯灭。 HoLd,保持运行控制状态。如果仪表为不限时的恒温控制(AI-518或AI-518P参数Pno=0时),此状态等同正常运行状态,但禁止从面板执行运行或停止操作。如果仪表为程序控制(Pno>0),该状态下仪表保持控制输出,但暂停计时,同时下显示器闪动显示"HoLd"且PRG灯闪动,可利用面板按键执行运行控制或停止以解除保持运行状态。注:仅用面板操作是无法进入保持运行状态的,只有直接修改本参数,或在程序运行中的编程可以进入该状态。	

Act	正/反作用	Re,为反作用调节方式,输入增大时,输出趋向减小,如加热控制。 dr,为正作用调节方式,输入增大时,输出趋向增大,如致冷控制。 rEbA,反作用调节,并且有上电免除下限报警及偏差下限报警功能。 drbA,正作用调节方式,并且有上电免除上限报警及偏差上限报警功能。	
At	自整定	OFF, 自整定At功能处于关闭状态。on, 启动PID及Ctl参数自整定功能,自整定结束后会自动返回OFF。FOFF, 自整定功能处于关闭状态,且禁止从面板操作启动自整定。AAt, 快速自整定功能,自整定结束后自动返回OFF。备注:AT参数选择AAt选项,在仪表上电后处于满功率加热输出状态时,可以自动启动AAt先进的快速参数自整定功能,无需传统的周期振荡自整定,就可以预先设置好PID参数,大部分情况首次加热即可实现准确控制。若AAT还未自动完成仪表就退出满功率输出状态,则AAT失败,终止自整定,并不会修改PID参数。	
Р	比例带	定义APID及PID调节的比例带,单位与PV值相同,而非采用量程的百分比。 注:通常都可采用At功能确定P、I、D及Ctl参数值,但对于熟悉的系统,比如成 批生产的加热设备,可直接输入已知的正确的P、I、D、Ctl参数值。	1~32000 单位
I	积分时间	定义PID调节的积分时间,单位是秒,I=0时取消积分作用。	1~9999秒
d	微分时间	定义PID调节的微分时间,单位是0.1秒。d=0时取消微分作用。	0~3200秒

Ctl	控制周期	采用SSR、可控硅或电流输出时一般设置为0.5-3.0秒。当输出采用继电器开关输出时或是采用加热/冷却双输出控制系统中,短的控制周期会缩短机械开关的寿命或导致冷/热输出频繁转换启动,周期太长则使控制精度降低,因此一般在15-40秒之间,建议Ctl设置为微分时间(基本应等于系统的滞后时间)的1/5~1/10左右。当输出为继电器开关(OPt或Aut设置为rELY),实际Ctl将限制在3秒以上,并且自整定At会自动设置Ctl为合适的数值,以兼顾控制精度及机械开关寿命。若输出为控制阀门,推荐Ctl=3~15秒,兼顾响应速度和避免阀门频繁动作。当调节模式参数CtrL定义为ON-OFF模式时,Ctl定义输出断开或上电后的ON动作延迟时间,避免断开后又立即接通,这项功能目的是保护压缩机的运行。	0.1~300.0 秒
P2	冷输出比例带	定义APID及PID调节的冷输出比例带,单位与PV值相同,而非采用量程的百分比。	1~32000 单位
12	冷输出积 分时间	定义冷输出PID调节的积分时间,单位是秒,I=0时取消积分作用。	1~9999秒
d2	冷输出微 分时间	定义冷输出PID调节的微分时间,单位是0.1秒。d=0时取消微分作用。	0~3200秒
CtI2	冷输出周期	采用SSR、可控硅或电流输出时一般设置为0.5-3.0秒。当输出为继电器开关 (OPt或Aut设置为rELY),实际Ctl将限制在3秒以上,一般建议为20~40秒。	0.2~300.0 秒

CHYS (死区、潜 环)		
---------------------	--	--

InP	输入规格 代码	InP用于选择输入规格, 其数值对应的 O K 1 S 2 R 3 T 4 E 5 J 6 B 7 N 8 WRe3-WRe25 9 WRe5-WRe26 10 用户指定的扩充输入规格	输入规格如下: 21 Pt100	0~37
		13 T (0~300.00℃) 15 MIO输入1 (安装I44为4~20mA) 16 MIO输入2 (安装I44为0~20mA) 17 K (0~300.00℃) 18 J (0~300.00℃) 19 Ni120 20 Cu50	35 -20~+20mV电压输入 37 -5V~+5V电压输入 42 0~10V电压输入 43 2~10V电压输入 44 -10V~+10V电压输入 45 0~100mV电压输入 46 20~100mV电压输入	

dPt	小数点位 置	可选择0、0.0、0.00、0.000四种显示格式。 注1: 一般热电偶或热电阻输入时,可选择0或0.0两种格式。即使选择0格式,内部仍维持0.1℃分辨率用于控制运算,使用S、R、B型热电偶时,建议选择0格式;当INP=17、18、22时,仪表内部为0.01℃分辨率,可选择0.0或0.00两种显示格式。 注2: 采用线性输入时,若测量值或其它相关参数数值可能大于9999时,建议不要选用0格式而应使用0.000的格式,因为大于9999后显示格式会变为00.00。	
SCL	输入刻度 下限	用于定义线性输入信号下限刻度值;当仪表作为变送输出或光柱显示时还用于定义信号的下限刻度。	-9990~ +32000
SCH	输入刻度 上限	用于定义线性输入信号上限刻度值,当仪表作为变送输出或光柱显示时还用于定 义信号的上限刻度。	单位
Scb	输入平移 修正	Scb参数用于对输入进行平移修正,以补偿传感器、输入信号或热电偶冷端自动补偿的误差。 注:一般应设置为0,不正确的设置会导致测量误差。	-1999~ +4000单位
FILt	输入数字 滤波	FILt决定数字滤波强度,设置越大滤波越强,但测量数据的响应速度也越慢。在测量受到较大干扰时,可逐步增大FILt使测量值瞬间跳动小于2~5个字即可。当仪表进行计量检定时,应将FILt设置为0或1以提高响应速度。FILt单位为0.5秒。	0~100

Fru	电源频率 及温度单 位选择	50C表示电源频率为50Hz,输入对该频率有最大抗干扰能力;温度单位为℃。 50F表示电源频率为50Hz,输入对该频率有最大抗干扰能力;温度单位为℃。 60C表示电源频率为60Hz,输入对该频率有最大抗干扰能力;温度单位为℃。 60F表示电源频率为60Hz,输入对该频率有最大抗干扰能力;温度单位为℉。	
OPt	输出类型	SSr,输出SSR驱动电压或可控硅过零触发时间比例信号,应分别安装G、K1或K3等模块,利用调整接通-断开的时间比例来调整输出功率,周期通常为0.5-4.0秒。rELy,输出为继电器触点开关或执行系统中有机械触点开关时(如接触器或压缩机等),应采用此设置。为保护机械触点寿命,系统限制输出周期至为3-120秒。0-20,0~20mA线性电流输出,需安装X3或X5线性电流输出模块。4-20,4~20mA线性电流输出,需安装X3或X5线性电流输出模块。PHA1,单相移相输出,应安装K50/K60移相触发输出模块实现移相触发输出。在该设置状态下,AUX不能作为调节输出的冷输出端。	

Aut	冷却输出类型	仅当AUX作为加热/冷却双向调节中的辅助输出时,定义AUX的输出类型。 SSr,输出SSR驱动电压或可控硅过零触发时间比例信号,应分别安装G或K1模块,利用调整接通-断开的时间比例来调整输出功率,周期通常为0.5-4.0秒。 rELy,输出为继电器触点开关或执行系统中有机械触点开关时(如接触器或压缩机等),应采用此设置。为保护机械触点寿命,系统限制输出周期至为3-120秒,一般为系统滞后时间的1/5-1/10。 0-20,0~20mA线性电流输出,AUX上需安装X3或X5线性电流输出模块。 4-20,4~20mA线性电流输出,AUX上需安装X3或X5线性电流输出模块。 注:若OPt或Aut输出设置为rELy,则输出周期原则限制在3-120秒之间。若加热或制冷输出信号为4-20mA时,当加热有输出时,制冷输出端信号会归零,输出是0mA不是4mA。	
OPL	输出下限	设置为0~100%时,在通常的单向调节中作为调节输出OUTP最小限制值。 设置为-1~-110%时,仪表成为一个双向输出系统,具备加热/冷却双输出功能,当设置Act为rE或rEbA时,主输出OUTP用于加热,辅助输出AUX用于致冷,反之当Act设置为dr或drbA时,OUTP用于致冷,AUX用于加热。 当仪表成为双向输出时,OPL用于反映最大冷输出限制,OPL=-100%时,不限制冷输出,-110%可使电流输出比如(4~20mA)最大量程超出10%以上,适合特殊场合,SSR或继电器输出时,最大冷输出限制不应大于100%。	-110~ +110%

ОРН	输出上限	在测量值PV小于OEF时,限制主输出OUTP的最大输出值,而当PV大于OEF后,系统修正输出上限为100%;在无反馈位置比例输出(OPt=nFEd时),OPH如果小于100,仪表会在上电时自动整定阀门位置,若OPH=100,则仪表会在输出为0%及100%时自动整定阀门位置,可缩短上电开机时间。OPH设置必须大于OPL。	0~110%
OEF	OPH有效 范围	测量值PV小于OEF时,OUTP输出上限为OPH,而当PV大于OEF值时,调节器输出不限制,为100%。 注:该功能用于一些低温时不能满功率加热的场合,例如由于需要烘干炉内水分或避免升温太快,某加热器在温度低于150℃时只允许最大30%的加热功率,则可设置:OEF=150.0(℃),OPH=30(%)。	-999.0~ +3200.0℃ 或线性单位
Addr	通讯地址	Addr参数用于定义仪表通讯地址,有效范围是0~99。在同一条通讯线路上的仪表应分别设置一个不同的Addr值以便相互区别。	0~99

bAud	COMM 模块功能 选择	bAud参数定义通讯波特率,可定义范围是0~28800bit/s(28.8K);当COM位置不用于通讯功能时,可由bAud参数设置将COM口作为其它功能使用:BAUD=0将COMM口作为0-20ma测量值变送输出;BAUD=1,作为外部开关量输入,功能同MIO位置,当MIO位置被占用时可将I2模块装在COMM位置;BAUD=2将COMM口作为AU1+AL1输出,适合小尺寸仪表;BAUD=3将COMM口作为AU1+AU2输出,适合小尺寸仪表;BAUD=4将COMM口作为4~20mA测量值变送输出;BAUD=8将COMM口作为0~20mA给定值变送输出;BAUD=12将COMM口作为4~20mA给定值变送输出;BAUD=12将COMM口作为4~20mA给定值变送输出。	0~28.8K
------	--------------------	--	---------

		Et 事件输入扩展为2路输入(使用双路需安装如I5等模块), Et参数=Et1*10+Et2,公式中Et1和Et2分别代表事件输入1和输入2, Et1或Et2数字含义如	
		下 :	
		1(ruSt):按钮型运行/停止功能,MIO短时间接通,启动运行控制(RUN),长按保持2秒以上,停止控制(STOP)。	
		2(SP1.2): 定点恒温控制时 (Pno=0) 切换给定值,MIO开关断开时,给定值	
		SV=SP 1, MIO接通时, 给定值SV=SP 2。 3(PId2): 单向控制(非加热/冷却双输出控制)时, MIO开关断开时,使用P、	
	┃ ┃事件输入	I、d及CtI参数进行运算调节,MIO开关接通时,使用P2、I2、d2及CtI2参数进行调	
Et	类型	节运算。 4(EAct):外部开关切换加热/制冷控制功能。MIO开关断开时,使用P、I、d及	
		CtI参数进行加热调节,MIO开关接通时,切换使用P2、I2、d2及CtI2参数进行制冷调节。	
		5(Eman):外部开关量切换手动/自动。开关断开时仪表处于自动状态,开关接通	
		时仪表处于手动状态。 6(Erun): 开关型外部开关量切换运行/停止。开关断开时仪表停止,开关接通时	
		仪表运行。	
		7(Eout):外部开关接通时强制主输出为0或Ero输出。(依据AF2.E参数功能设置)。	
		备注:若设置Et1=Et2,则系统会先执行Et1再执行Et2,结果会以Et2为准。	

AF	高级功能代码	AF参数用于选择高级功能,其计算方法如下: AF=A×1+B×2+C×4+D×8+E×16+F×32+G×64+H×128 A=0,HdAL及LdAL为偏差报警;A=1,HdAL及LdAL为绝对值报警,这样仪表可分别拥有2路绝对值上限报警及绝对值下限报警。 B=0,报警及位式调节回差为单边回差;B=1,为双边回差。 C=0,仪表第三排带1位小数点;C=1,仪表第三排不带小数点(仅三排显示可用)。 D=0,进入参数表密码为公共的808;D=1,密码为参数PASd值。切换为进现场参数后长按左键来找LOC。 E=0,HIAL及LOAL分别为绝对值上限报警及绝对值下限报警;E=1,HIAL及LOAL分别改变为偏差上限报警及偏差下限报警,这样有4路偏差报警。 F=0,精细控制模式,内部控制分辨率是显示的10倍,但线性输入时其最大显示值为3200单位;F=1为高分辨率显示模式,当要求显示数值大于3200时选该模式。G=0,传感器断线导致的测量值增大允许上限报警(上限报警设置值应小于信号量程上限);G=1,传感器断线导致的测量值增大元允许上限报警;注意该模式下即使正常报警上限报警(HIAL)也会延迟约15秒才动作。 H=0,HIAL及LOAL为独立报警逻辑;H=1,HIAL及LOAL变为区间报警,满足LOAL>PV>HIAL对会报警,报警代码为HIAL,输出也用HIAL。注:非专家级别用户,可设置该参数为32。	0~255

AFC	通讯模式	AFC参数用于选择通讯模式,其计算方法如下: AFC=A×1+D×8+G×64; A=0, 仪表通讯协议为标准MODBUS;A=1, 仪表通讯协议为AIBUS;A=2, 仪表通讯协议为MODBUS兼容模式;A=4, 仪表通讯协议为兼容S6模块通讯功能。 D=0, 无校验; D=1, 偶校验。 G=0, 正常使用AUX; G=1, AUX做事件输入。 注: AFC设置为MODBUS协议下支持03H(读参数及数据)及06H(写单个参数)两条指令。其中AFC=0、4时,03H指令一次最多可读20个字的数据; AFC=2时,03H指令读取数据固定为4个字。具体内容请查看通讯协议说明。	0~255
PASd	密码	PASd等于0-255或AF.D=0时,设置Loc=808可进入完整参数表。 PASd等于256-9999且AF.D=1时,必须设置Loc=PASd方可进入完整参数表。 注:只有专家级用户才可设置PASd,建议用统一的密码以避免忘记。	0-9999
SPL	SV下限	SP允许设置的最小值。	-9990~
SPH	SV上限	SP允许设置的最大值。	+30000单位
SP1	给定点1	对于AI-518型仪表或AI-518P的参数Pno=0或1时,正常情况下给定值SV=SP1。	
SP2	给定点2	对于AI-518型仪表或AI-518P的参数Pno=0或1时,当MIO位置安装了I2模块,且设置参数Et=SP1.2时,可通过一个外部的开关来切换SP1/SP2,当开关断开时,SV=SP1,当开关接通时SV=SP2。	SPL~SPH

SPr	升温速率 限制(仅 AI-518P 有)	若SPr被设置为有效,则程序运行或改变设定值时,若测量值低于给定值,仪表将以SPr定义的升温速率限制值升温至给定值。在升温速率限制状态下,PRG灯将闪动。 SPr对定点控制 (Pno=0)和程序平台模式时有效,斜率模式不使用此功能。PAF的C项=1时SPr和SPrL单位变为℃///\\right	0~3200 ℃/分钟
Pno	程序段数 (仅AI- 518P有)	用于定义有效的程序段数,数值0~30,可减少不必要的程序段数,使操作及程序设置方便最终客户的使用,其中设置Pno=0时,Al-518P为恒温模式,并可完全兼容Al-518的操作;同时亦可设置SPr参数用于限制升温速率;设置Pno=1时为单段程序模式,只需要设置一个给定值和一个保温时间,设置非常方便,设置Pno=2~30时,Al-518P采用正常程序控制仪表操作模式进行操作。	0~30
PonP	上电自动运行模式	Cont,停电前为停止状态则继续停止,否则在仪表通电后继续在原终止处执行。 StoP,通电后无论出现何种情况,仪表都进入停止状态。 run1,停电前为停止状态则继续停止,否则来电后都自动从头开始运行程序。 dASt,在通电后如果没有偏差报警则程序继续执行,若有偏差报警则停止运行。 HoLd,仪表在运行中停电,来电后无论出现何种情况,仪表都进入暂停状态。但 如果仪表停电前为停止状态,则来电后仍保持停止状态。	

		PAF参数用于选择程序控制功能,其计算方法如下:	
		PAF=A × 1+B × 2 +C × 4 +D × 8+E × 16+F × 32+G × 64+H × 128	
		A=0,准备功能(rdy)无效;A=1,准备功能有效。	
		B=0,斜率模式,程序运行时存在温度差别时,按折线过渡,可以定义不同的升	
		│温模式,也可以降温运行;B=1,平台模式(恒温模式),每段程序定义给定值及保 │	
	和京江仁	温时间,到达下段条件可受rdy功能限制,升/降温速率可受SPr/SPrL参数限制;另	
	程序运行	┃外,即使设置B=0,如果程序最后一段不是结束命令,则也执行恒温模式,时间到后 ┃	
PAF	模式 (仅	自动结束。	0~255
	适用AI- 518P型)	C=0,程序时间以分为单位;C=1,时间以小时为单位。	
	310F型)	D=0,无测量值启动功能;D=1,有测量值启动功能。	
		E=0,程序事件输出1和2分别选择AL1和AL2输出;E=1,程序事件输出1和2分	
		别选择AU1和AU2输出。	
		F=0,标准运行模式;F=1,程序运行时执行RUN操作将进入暂停(HoLd)状态。	
		G=0,程序时间由C项决定;G=1,时间以秒为单位。	
		H=0,标准运行模式;H=1,斜率模式时每段都具备准备功能(rdy)。	
EP1-	现场使用	可定义1~8个现场参数,作为Loc上锁后常用的需要现场操作工修改的参数,如果	
EP8	参数定义	没有或不足8个现场参数,可将其值设置为nonE。	

3.3 特殊功能补充说明

3.3.1 单相移相触发输出

设置OPt为PHA1时,在OUTP位置安装K50/K60模块可实现可控硅移相触发输出,它能通过控制可控硅(2个单向反并或1个双向)的导通角来实现连续的加热功率调整,而且针对正弦波的特性进行功率的非线性修正,实现理想的控制效果。触发器采用了自同步技术,所以允许仪表电源和加热器电源不同。移相触发会给电网带来高频干扰,应用时要注意其它电器的抗干扰性是否能满足要求。该模块目前只能用于50Hz和60Hz电源的地区。

3.3.2 上电时免除报警功能

仪表刚刚上电常常会导致一些不必要的报警,例如电炉温度控制(加热控制)时,刚上电时,实际温度都远低于给定温度,如果用户设置了下限报警或偏差下限报警,则将导致仪表一上电就满足报警条件,而实际上控制系统并不一定出现问题。反之,在致冷控制(正作用控制)中,刚上电可能导致上限报警或偏差上限报警。因此AI仪表提供上电免除报警的特性,当Act参数设置为rEbA或drbA时,仪表上电后即使满足相应报警条件,也不立即报警,需要等该报警条件取消后,如果再出现满足报警要求的条件才产生相应的报警。

3.3.3 给定值切换 / 外部程序控制按钮

如果在MIO插座(或设置bAud=1,在COM插座)上安装I2模块,则可在外部连接一个开关来执行控制功能,设置参数Et=ruSt时,按一下按钮执行运行(run)操作,而按下按钮保持2秒以上则执行停止(StoP)操作。对于AI-518型仪表(或AI-518P型仪表参数Pno=0时)且参数Et=SP1.2时,可用于切换两个不同的给定点SP1/SP2。

3.3.4 通讯功能

AI 系列仪表可在 COMM 位置安装 S 或 S4 型 RS485 通讯接口模块,与计算机实现多机连接,通过计算机可实现对仪表的各项操作及功能。对于无 RS485 接口的计算机可加一个 RS232C/RS485 转换器或 USB/RS485 转换器,每个通讯口可直接连接 1-60 台仪表,加 RS485 中继器后最多可连接 80 台仪表,一台计算机可支持多个通讯口连接。注意每台仪表应设置不同的地址。仪表数量较多时,可用 2 台或多台计算机,各计算机之间再构成局部网络。厂方可提供 AIDCS 应用软件,它可运行在中文 WINDOWS 操作系统下,能实现对 1~200 台 AI 系列各种型号仪表的集中监控与管理,并可以自动记录测量数据及打印。用户如果希望自行开发组态软件,要获得通讯协议时,可向仪表销售员免费索取。有多种组态软件可支持 AI 仪表通讯。

3.3.5 温度变送器 / 程序给定发生器

除了作为常规的APID/PID或ON-OFF位式调节外,仪表也可以将测量值(PV)或给定值(SV)直接从OUTP端输出。输出定义为电流输出时可使得AI-518可作为温度变送器使用,AI-518P作为程序给定发生器用,4~20mA电流输出精度为对应显示值的0.3%FS。相关的参数设置如下:

CtrL=PoP为变送输出PV值, CtrL=SoP为变送输出SV值。

OPt, 选择输出规格, 通常选4~20mA输出或0~20mA输出。

InP、SCH、SCL、Scb等参数选择输入热电偶或热电阻规格、变送输出的PV值下限、上限及平移修正。

例如:要求仪表具有K分度热电偶变送功能,温度范围0~400℃,输出为4~20mA。则各参数设置如下:CtrL=PoP、InP=0、ScL=0.0、ScH=400.0、OPt=4-20。由此定义的变送器,当温度小于等于0℃时,OUTP位置安装X3或X5线性电流模块输出为4mA,当温度等于400℃时,输出为20mA,在0~400℃之间时,输出在4~20mA之间连续变化。

3.3.6 自定义输入规格

当设置参数 InP=10 时,仪表输入规格为自定义输入类型,并可编辑非线性的表格,设置方法是:将 Loc 参数设置为 3698,即可进入表格设置状态。其中参数 A 00 定义表格用途:0 用于输入非线性测量或输入信号多段线性修正,1 用于高温炉非线性功率控制;参数有 A01~A04 及 d00~d59 (其中 A02~A04 及 d00~d59 数值具备小数位,如 dPt 设置为 0.0,则 A02~d59 数值都应除 10),分别设置如下:

A 00=0

A 01 定义输入类型, 其数值定义如下:

A
$$01=A \times 1+E \times 16+G \times 64$$

- **A** 表示输入信号量程: 0, 0~20mV(0-80 欧); 1, 0~60mV(0-240 欧); 2, 0~100mV(0-400 欧); 4, 0~5V; 10, 0~20mA 或 0~10V (MIO 位置安装 I44)。
- E表示输入信号显示: 0,表示线性输入信号时表格输出值还需要由ScH/ScL参数再进行标定。1,表示表格输出值就是显示值。
- **G** 表示输入信号类型 (确定输入信号是温度类还是非温度类): 0, 热电偶; 1, 热电阻; 2, 线性电压(电流); 3, 线性电阻。

例如:信号为 1-5V 电压输入, 非温度类, 则设置 A01=4×1+0×16+2×64=132

- **A 02** 定义输入信号下限、等于信号下限×K/量程、例如 1-5V 信号输入、则可设置 A02=1×25000/5=5000。
 - **K** 为信号系数, 其中 A01.A 为 0 时系数为 20000, A01.A 为 2、4、10 项时系数为 25000, A01.A 为 1 时系数 为 30000。

- **A 03** 定义输入信号范围,等于信号范围 × K/量程,例如 1-5V 输入中,范围是 5-1V=4V,则应设置 A03=4 × 25000/5=20000。
- **A 04** 定义输入信号表格间距, A04=A03/曲线段数, 如果只有一段,则 A04 等于 A03;如果分 2 段,则 A04=A03/2。
- d 00 表示曲线表格起点值,其对应为输入信号为 A02 时的输出值。例可设置为 0。
- **d 01** 表示曲线表格第 1 段值,其对应为输入信号为 A02+A04 时的输出值,例如 1-5V 输入中可设置为 20000 (满量程)。
- d 02-d59 表示曲线表格第 2-59 段值,如全部应用可修正非常复杂的曲线,如开方、对数和指数曲线等。

3.3.7 输入信号多段线件修正功能

当设置输入规格 InP 加上 64 时,仪表具备输入多段线性修正功能,设置方法是:将 Loc 参数设置为 3698,即可进入表格设置状态(如果原来 Loc=808,则需要先将 Loc 设置为 0,退出参数设置状态,然后再重新进入参数状态将 Loc 设置为 3698)。分别设置如下:

A00: 0;

A01: 输入信号及显示设置:

A $01=A \times 1+E \times 16+G \times 64$

A 表示信号量程: A=0, 0~20mV(0-80 欧); A=1, 0~60mV (0-240 欧); A=2, 0~100mV (0-400 欧)。

E 表示信号显示: E=0, 无作用; E=1, 表格 d00~d59 设置值就是显示值。

G 表示信号类型: G=0, 热电偶; G=1, 热电阻。

如:信号为热电偶输入, 温度类, 则设置 A01=2×1+1×16+0×64=18

A02 起始温度

A03 测量范围=测量最高值-A02

A04 每段温度间距=A03/分段数

d00~d59 每段温度设置值

例如: K 热电偶输入使用范围为 0 到 300 度, 一位小数, 每间隔 100 度修正。则设置参数 A00=0, A01=18, A02=0.0, A03=300.0, A04=100.0, d00=0.0,d01=100.0, d02=200.0, d03=300.0。要修正多少只需把相应温度点设高或者设低即可,如仪表显示 200.0 度,校正设备测量是 202.0,则可以把 d02=200.0 改为 d02=202.0。

注:修正值为每个点的值,点与点之间是自动线性过渡。启用此功能后仪表只能在表格设置的温度范围内显示,当实际温度超出表格范围时,仪表会显示 orAL 超量程报警。

3.3.8 高温炉非线性功率控制功能

对于负载是非线性的高温炉而言,其电阻会随温度变化而剧烈变化,以硅钼棒炉为例,其室温对于电阻只有 1600 度时的 6%左右,如果没有对仪表的输出功率进行限制及变换,会导致两个问题,首先是低温启动时电炉电流过大,超过电网、可控硅及变压器最大允许负荷,对可控硅、电炉、变压器造成损害或导致电网跳闸,此外由于仪表相 同输出时,电炉在低温区和高温区的功率最大会差 10 多倍,这意味 PID 参数中的比例带 P 在不同温度下需要有 10 多倍的变化,才能使低温和高温区均能实现精确控温,而用限制参数 OPH 的方法只能限制输出功率,无法实现比例带变换,若要高低温区都能满足精确控温,就需要设置多组 PID,不仅使用复杂,而且效果也不好。自定义输出限制变换功能同时解决了限制输出以及变换比例带 P 的功能,该功能依据测量到的温度对仪表输出进行限制及变换,不仅限制了低温区的功率同时也自动修正在不同温度下的比例带参数,并且功率限制和比例带的变化都是连续折线方式,比分组方式效果更佳,该功率限制只按比例降低了仪表的实际输出而仪表输出显示范围仍为 0~100%。例如用于硅钼棒炉时则可设置如下(客户也可以按自己需要修改数据):

A00=1, A 01=1050, A02=100.0; A03=1500; A04=750.0, d00=120.0; d01=1100, d02=2000

当设置参数 A00=1 且 A01=1050 时,仪表启用自定义输出限制变换功能,A02 表示输出限制的起始温度,A03 表示输出限制的温度区间,A04 表示非线性数据温度分段的段长,在本例中 1500/750.0=2,表示有分 2 段,段数越 多,曲线可以做到越复杂精细。d00 表示低于 A02 时的最大输出功率,其单位是 $100\% \times (1/2000)$,d00=120.0 表示 6%,d01 表示 55%,d02 表示 100%。

这条曲线的含义为温度在 100℃以下时输出限制为 6%, 温度为 100~850℃之间功率限制又 6%平滑过渡到 55%, 温度在 850~1600℃之间功率限制由 55%过渡到 100%, 温度大于 1600℃以上不限制为 100%。

注: d值的范围为0~59,相当于最多可分60段功率限制。该功能无法和输入多段线性修正功能同时使用,若同时需要特殊规格输入,可联系销售人员协商固化到仪表内部,但可能需要一次性的额外付费。

4 程序控制 (仅适用 AI-518P 型)

AI-518P程序型仪表用于需要按一定时间规律自动改变给定值进行控制的场合。它具备30段程序编排功能,可设置任意大小的给定值升、降斜率;具有跳转、运行、暂停及停止等可编程/可操作命令,可在程序控制运行中修改程序;具有停电处理模式、测量值启动功能及准备功能,使程序执行更有效率及更完善。

4.1 功能及概念

程序段: 段号可从1~30, 当前段(StEP)表示目前正在执行的段。

设定时间: 指程序段设定运行的总时间,单位是分或小时,有效数值从0.1~3200。

运行时间: 指当前段已运行时间, 当运行时间达到设置的段时间时, 程序自动转往下一段运行。

跳转:程序段可编程为自动跳转到任意段,实现循环控制。通过修改StEP的数值也可实现跳转。

运行(run/Hold):程序在运行状态时,时间计时,给定值按预先编排的程序曲线变化。在保持运行状态(暂停)下,时间停止计时,给定值保持不变。暂停操作(Hold)能在程序段中编入。

停止(StoP): 执行停止操作,将使程序停止运行,此时运行时间被清0并停止计时,并且停止控制输出。在停止状态下执行运行操作,则仪表将从StEP设置的段号启动运行程序。可在程序段中编入自动停止的功能,并同时对运行段号StEP值进行设置。也可人为随时执行停止操作(执行后StEP被设置为1,不过用户可再进行修改)。如果程序段号已运行完Pno参数中定义的最后一段,则自动停止。

停电/开机事件: 指仪表接通电源或在运行中意外停电,通过设置PonP参数可选择多种不同处理方案。

准备(rdy)功能:在启动运行程序、意外停电/开机后但又需要继续运行程序时,如果测量值与给定值不同(如果允许测量值启动功能,系统先用测量值启动功能进行处理,如果测量值启动功能能有效起作用,则准备功能就不需

要起作用,对不符合测量值启动功能处理条件的才用准备功能进行处理),并且其差值大于偏差报警值(HdAL及LdAL)时,仪表并不立即进行正(或负)偏差报警,而是先将测量值调节到其误差小于偏差报警值,此时程序也暂停计时,也不输出偏差报警信号,直到正、负偏差符合要求后才再启动程序。准备功能用于设置无法预知升/降温时间的段也十分有用。要允许或取消准备功能,可在PAF参数中进行设置。准备功能可保证了运行整条程序曲线的完整性,但由于有准备时间而使得运行时间可能增加。准备功能和测量值启动功能都用于解决启动运行时测量值与给定值不一致而对程序运行产生的不确定性,以获得高效率、完整并符合用户要求程序运行结果。

测量值启动功能:在启动运行程序、意外停电/开机后但又需要继续运行程序时时,仪表的实际测量值与程序计算的给定值往往都不相同,而这种不同有时是用户不希望产生而又难以预料的。例如:一个升温段程序,设置仪表由25℃经过600分钟升温至625℃,每分钟升温1℃。假定程序从该段起始位置启动时,如果测量值刚好为25℃,则程序能按原计划顺利执行,但如果因启动时系统温度还未降下来,测量值为100℃,则程序就难以按原计划顺利执行。测量值启动功能则可由仪表通过自动调整运行时间使得二者保持一致,例如上例中,如果启动运行时测量温度为100℃,则仪表就自动将运行时间设置为75分钟,这样程序就直接从100℃的位置启动运行。

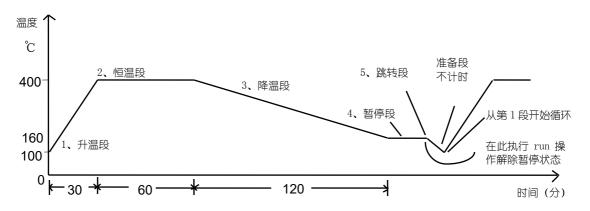
曲线拟合: 曲线拟合是AI-518P型仪表采用的一种控制技术,由于控制对象通常具有时间滞后的特点,所以仪表对线性升、降温及恒温曲线在折点处自动平滑化,平滑程度与系统的滞后时间t(t=微分时间d+控制周期CtI)有关,t越大,则平滑程度也越大,反之越小。控制对象的滞后时间(如热惯性)越小,则程序控制效果越好。按曲线拟合方式处理程序曲线,可以避免出现超调现象。注意: 曲线拟合的特性使程序控制在线性程序升温时产生固定的负偏差,在线性降温时产生固定的正偏差,该偏差值大小与滞后时间(t)和升(降)温速率成正比。这是正常的现象。

4.2 程序编排

4.2.1 斜率模式

参数PAF.B=0时,程序编排统一采用温度~时间~温度格式,其定义是:从当前段设置温度,经过该段设置的时间到达下一温度。温度设置值的单位同测量值PV,而时间值的单位可选择分钟或小时。在斜率模式下,若运行到Pno定义的最后一段程序不为停止命令或跳转命令(后文时间设置可编辑),则表示在该温度下保温该段时间后自动结束。下例为一个包含线性升温、恒温、线性降温、跳转循环、准备、暂停的5段程序例子。

第1段 SP 1=100.0 t 1=30.0 ; 100℃起开始线性升温到SP 2, 升温时间为30分钟, 升温斜率为10℃/分


第2段 SP 2=400.0 t 2=60.0 ; 在400℃保温运行,时间为60分

第3段 SP 3=400.0 t 3=120.0 ; 降温到SP 4, 降温时间为120分, 降温斜率为2℃/分

第4段 SP 4=160.0 t 4=0.0 ; 降温至160℃后进入暂停状态,需执行运行 (run) 才能继续运行下一段

第5段 SP 5=160.0 t 5=-1.0 ; 跳往第1段执行, 从头循环开始运行。

本例中,在第5段跳往第1段后,由于其温度为160℃,而C 01为100℃,不相等,而第5段又是跳转段,假定偏差上限报警值设置为5℃,则程序在第5段跳往第1段后将先进入准备状态,即先将温度控制到小于偏差上限报警值,即105℃,然后再进行第1段的程序升温。这个控温程序见下图:

采用温度~时间编程方法的优点是升温、降温的斜率设置的范围非常宽。升温及恒温段具有统一的设置格式,方便学习。设置曲线更灵活,可以设置连续设置升温段(如用不同斜率的升温段近似实现函数升温),或连续的恒温段。

4.2.2 平台模式

设置参数 PAF.B=1 可选择平台模式,适合不要求在程序中定义升温速率的场合(可用 SPr 参数限制升温速率,若 SPr 设置为 0 则表示全速升温),例如程序设置为: SP 1=100.0; t 1=30.0; SP 2=400.0; t 2=60.0,表示以 SPr 参数限制的速率升温到 100 度保温 30 分钟,然后再升温到 400 度恒温 60 分钟,由于升温时间会占用保温时间,可设置 rdy 功能有效,以保证正确的恒温时间。

4.2.3 时间设置

t-XX=0.1~3200(分)表示第XX段设置的时间值(注:时间单位也可以用PAF参数改变为小时)。

t-XX=0.0 仪表在第XX段进入保持运行状态(HoLd),程序在此暂停运行,停止计时。

t-XX = -121.0. 程序执行StoP操作, 讲入停止状态。

t-XX=-0.1~-122.0 时间值为负数表示是一个跳转+事件输出命令,整数部分-1~-120表示跳转的段,但超出Pno定义的段数时无效,整数为0(小数不为0),表示运行到下一段,小数位置为事件输出编程,可以在程序运行过程中编程使AL1及AL2动作,-XXX.0表示不影响程序事件状态,只是跳转,注意如果报警输出定义AOP也同时定义报警由AL1或AL2动出,程序事件或报警都可以导致AL1或AL2动作,-XXX.1~-XXX.4含义如下:

-XXX.1, AL1动作, AL2解除;

-XXX.2. AL1解除. AL2动作:

-XXX.3, AL1和AL2均动作;

-XXX.4, AL1和AL2都解除;

例如:设置t-5=-1.1,表示运行到第5段程序时,AL1动作,AL2解除并跳转到第一段运行。

又如:设置t-6=-0.3,表示运行到第6段程序时,AL1和AL2动作,并继续下段程序(第7段)运行。

注意: 除执行运行操作或接通电源时遇到跳转段时,可以继续跳转运行外。在程序运行中遇到跳转段控制程序跳到的还是跳转段时,则程序自动暂停执行(即仪表在连续两次跳转中自动插入暂停操作),需要外部的运行 / 暂停操作解除暂停状态。注意跳转段如果跳到的是自己(例如t- 6=-6),则将无法解除暂停状态,因为这样的段可说是无意义的。

4.2.4 给定值设置

给定值可设置的数值范围有SPL及SPH限制,是-999~+3200℃,表示需要控制的温度值(℃)或线性定义单位。

4.2.5 运行多条曲线时程序的编排方法

AI系列程序型仪表具有灵活先进的程序编排方法,对于编有多条控温曲线的用户,可以先用StEP跳转至起始段再运行的方法来分别执行不同的曲线。如用户有3条长度均为3段的曲线,则可将程序编排在2~4,5~7,8~10。要使启动后分别执行不同的曲线,在每次启动运行前将StEP设置为需要运行曲线的起始段即可。

5 常见问题解答

5.1 如何自整定?

在测量值PV为室温时,把设定值SV设置成常用温度的60%左右(对于压力或流量等信号可直接设置为常用的设定值),然后按住《一两秒调出At参数,把参数值从OFF改成ON并点按《一确认开启自整定。等自整定At符号自动不闪烁后就可以正常工作。

5.2 怎么进入内部参数列表?

按住 两秒可进入参数列表,然后短按 可以查找下一个参数。如果完整参数被锁定,则找到密码锁参数 LOC并设定808,接着短按 就可以看到全部参数。

5.3 如何判定仪表有无输出?

首先看仪表面板OP1指示灯有没有亮,如果不亮需要确定仪表是否运行,再检查仪表参数是否设置正确;如果亮说明仪表输出状态正常,可以用万用表检测仪表输出端子信号是否正常,输出信号正常但后端执行器不工作就需要沿着输出线路排查其他设备或线路故障,无输出信号可以判断为仪表输出模块异常。

5.4 仪表面板闪烁 orAL?

表示仪表没有检测到输入信号。首先查看传感器型号有没有和输入规格参数InP相对应,然后查看仪表输入端接线是否正确。如果都没有问题,测量传感器进来的信号是否正确,有可能传感器损坏。

5.5 怎么进入程序段设置?

5.6 报警参数如何设置?

首先把报警参数设定为需要的数值(例:需要设置200度上限报警,则把HIAL参数改成200),然后进入内部参数找到AOP参数定义报警信号输出端口(例:需要上限报警从AL1输出,则把AOP个位数设置为1。具体定义可查看说明书AOP参数介绍)。

5.7 怎么设置加热制冷双输出?

进入内部参数列表找到OPL参数(输出下限),把OPL改成-1%~-110%,仪表就变为双向PID输出系统,主输出OUTP用于加热控制,辅助输出AUX用于制冷控制。

